Noticias Científicas

<p>Patient-derived tumour organoids (mini colon tumours). In blue: cellular nuclei; in red: cellular membranes (Image: Enza Lonardo, IRB Barcelona)</p>
23 Feb 2015

A study published in Nature Genetics by researchers at IRB Barcelona explains the basis for the classification of colon tumours in good or bad prognosis by analysing the tissue surrounding the tumour cells.

The scientists are currently developing a test that enables the identification of patients at risk of relapse after surgical removal of the tumour by measuring 4-6 genes expressed by the tumour microenvironment.

The researchers also propose to test in patients a particular drug that blocks the metastatic capacity of colorectal cancers in mice.

This drug has been tested using novel technology that allows the growth of mini colon cancers, also known as organoids, derived from patient samples.

<p>Detail of one mm of a mouse brain. In green, capillaries that form part of the blood-brain barrier; in red, molecules attached to the shuttle patented by IRB Barcelona have managed to cross the barrier and reach the brain (black backgr). (Benjamí Oller)</p>
5 Feb 2015

Chemists at IRB Barcelona patent and present a shuttle capable of transporting molecules into the brain; this achievement could facilitate the treatment of diseases with no therapy available.

98% of drugs targeting the central nervous system are discarded because they are unable to cross the physical barrier that protects the brain.

The IRB Barcelona scientists, together with clinical teams, are now evaluating the potential of their shuttle for rare and orphan diseases.

<p>Scheme of photoswitchable inhibition protein-protein interaction (PPI). / Pau Gorostiza et al.</p>
23 Jan 2015

Researchers in Barcelona discover more potential candidates on the route to tailored, photo-switchable therapies by disproving design limitation

<p>Analogs of borrelidin to treat malaria (IRB Barcelona)</p>
10 Dec 2014

Researchers at IRB Barcelona identify a family of efficient and selective molecules to combat the parasite Plasmodium, causal agent of malaria.

Two analogues of borrelidin were found to cure 100% of infected mice and produce immunological memory in these animals, a property not previously observed in an antimalarial drug.

Growing resistance to current treatment for malaria increases the need for new drug candidates.

<p>Scheme of the predictive model of chemical substances and their association with human diseases. The orange and green circles show adverse and therapeutic effects respectively. The size of the circles is proportional to the number of molecules that hold t</p>
1 Dec 2014

The analysis of drugs, natural products, and chemical substances found in the environment allows the identification of the chemical fragments responsible for a therapeutic or deleterious effect on human health.

This knowledge may be valuable for the design of drugs with fewer secondary effects, for associating diseases, and for identifying new uses for drugs currently on the market.

The predictive model developed by researchers at IRB Barcelona provides information for the treatment of 20% of human diseases.

<p>Sample from mouse liver. A high glycogen content (pink) suppresses appetite and improves the management of diabetes and obesity. Image: I López-Soldado, IRB Barcelona</p>
13 Nov 2014

Mice eat less when their hepatic glucose stores are high.

“We have to find treatments to increase hepatic glucose because of its positive effect in diabetes and obesity,” says Joan Guinovart, head of the study published in Diabetes.

<p>Fruit fly larva are used to study stem cells key features (Image: wikipedia)</p>
29 Oct 2014

The study, performed with fruit flies, describes a gene that determines whether a specialized cell conserves the capacity to become a stem cell again.

Unveiling the genetic traits that favour the retention of stem cell properties is crucial for regenerative medicine.

Published in Cell Reports, the article is the fruit of collaboration between researchers at IRB Barcelona and CSIC.

<p>In green, details of a tumour surrounded by the muscle fibres (red) of the Drosophila (O Martorell, IRB Barcelona)</p>
8 Oct 2014

Researchers generate for the first time Drosophila melanogaster with intestinal cancer and reveal key genetic factors behind human colon cancer.

The scientists identify a human gene that favours the proliferation of tumour cells in early stages of colon cancer.

Furthermore, the flies are useful for faster and more economic drug screening.

<p>Representative images of beta-amyloid aggregation and the dendritic trees of living and dead neurons (Bernat Serra-Vidal, IRB Barcelona/Lluís Pujades & Daniela Rossi UB)</p>
1 Oct 2014

Scientists at IRB Barcelona in collaboration with researchers at the University of Barcelona observe that aggregates of 20 to 100 units of beta-amyloid have a structure that is the most harmful to neurons.

This is the first time that a method allows scientists to monitor aggregation while simultaneously detect a structural pattern responsible for the toxicity of beta-amyloid aggregation.

The researchers state that these studies are a step towards finding a therapeutic target for a disease which, to date, has no treatment.

<p>Researchers have experimentally and theoretically determined for the first time an important property of DNA that has remained unknown until now - its dielectric constant. This opens the way to a realistic computational description of DNA...</p>
18 Aug 2014

The electric polarizability of DNA is a fundamental property that directly influences its biological functions. Despite the importance of this property, however, its measurement has remained elusive so far.

In a study published in PNAS today, researchers at Barcelona’s Institute for Bioengineering of Catalonia (IBEC) led by Laura Fumagalli, senior researcher at IBEC and lecturer at the University of Barcelona, and their collaborators at the Institute for Research in Biomedicine (IRB) and at Barcelona Supercomputing Center (BSC), and at Centro Nacional de Biotecnologia (CNB-CSIC) and IMDEA Nanociencia in Madrid, describe how they have found a way to directly measure DNA electric polarizability – represented by its dielectric constant, which indicates how a material reacts to an applied electric field – for the first time ever.