A new method to regulate cell plasticity, without causing cell damage

/Aging and Metabolism

Researchers at IRB Barcelona’s Cellular Plasticity and Disease Laboratory propose a more efficient way to limit cell plasticity without causing cell damage.

The new method sheds light on processes in which cell plasticity is important, such as cancer and immunology.

The study was published in the journal Nature Cell Biology and has been supported by ”la Caixa” Foundation.

Cell plasticity is a property by which a cell can take on different and reversible identities. Cell plasticity is essential for embryo development and for the correct function of the immune system. This property is also crucial in cancer as many cancer cells use it to gain resistance to chemotherapy and invade and colonise distant parts of the body.

Headed by the ICREA researcher Manuel Serrano, scientists at the Cellular Plasticity and Disease Laboratory at the Institute for Research in Biomedicine (IRB Barcelona) discovered a way to regulate this plasticity by “blocking” plastic cells in one of their possible states.

“The identity of each cell type is defined by a particular gene expression program. What makes plastic cells special is that, in addition to their identity genes, they can express at low levels genes belonging to other cell identities. This sort of “background noise” is what allows them to change identity at a given time, and what was once “background noise” becomes the dominant genetic program,” explained Serrano.


Regulating gene expression to modulate plasticity

Until now, the methods used to block cell plasticity were based on inhibiting some of the external stimuli that cells receive. But these approaches are usually incompatible with cell multiplication and can end up damaging the cells themselves.  

The new method developed by Serrano’s lab, which has received the support of ”la Caixa” Foundation, focuses on the profound mechanism that regulates gene expression, it does not affect cell viability, and it is completely reversible. The key to this new approach is the inhibition of the protein CDK8.

“We have observed that CDK8 inhibition strengthens the expression of genes that determine cell identity, and this occurs at the expense of switching off the “background noise” of alternative identities.  So the cells are fixed in a specific identity and they lose their plasticity,” sayid Dr. Cian J Lynch, first author of the study and postdoctoral fellow in the same laboratory.


Important implications in biomedicine

Having the capacity to regulate cell plasticity can have many advantages in a biomedical research context as it allows researchers to study all the processes in which plasticity is a key element, such as cancer and embryo development. The present study focused on embryonic stem cells. The great plasticity of this type of cells makes them highly attractive for cell therapy applications. However, this very same plasticity poses a real challenge when it comes to culturing these cells in the lab.

“Because of the intrinsic plasticity of embryonic stem cells, cultures produced in the lab are highly heterogeneous, and previous methods available to reduce plasticity were very harmful to the cells.  This was a practical problem with no apparent solution,” said Dr. Raquel Bernad, co-author of the study. The researchers demonstrated that it is possible to culture embryonic stem cells in the presence of a CDK8 inhibitor, thus making the culture less plastic, more homogeneous and without damaging the cells. Something that had not been achieved until now. Simply removing the CDK8 inhibitor restores plasticity to the cells.

Furthermore, scientists from other laboratories have observed that this new method may have implications in autoimmune diseases in which the plasticity of T cells make them adopt an overly active state, leading to an exacerbated immune response.

With respect to implications for oncology, “Cell plasticity is known to be a key factor underlying resistance to chemotherapy. By blocking cell plasticity, we hope to improve reactions to chemotherapy by achieving more homogeneous and lasting responses,” added Serrano.


This study was made possible by the collaboration of national and international centres such as the Centro Nacional de Investigaciones Oncológicas (CNIO) in Madrid, the University of Cambridge in the UK, the University of Aveiro in Portugal, the  Institute for Bioengineering of Catalonia (IBEC) in Barcelona, the Institut Curie, University of Lyon and the Institute for Molecular Genetics of Montpelier in France, the University of Oviedo and the Spanish CIBER-BBN.
The study was supported by ”la Caixa” Foundation and received funding by the European Research Council (ERC)and the Plan Nacional of the Spanish Ministry of Science and Innovation.


Reference article:
Cian J. Lynch, Raquel Bernad, Ana Martínez-Val, Marta N. Shahbazi, Sandrina Nóbrega-Pereira, Isabel Calvo, Carmen Blanco-Aparicio, Carolina Tarantino, Elena Garreta, Laia Richart-Ginés, Noelia Alcazar, Osvaldo Graña-Castro, Gonzalo Gómez-Lopez, Irene Aksoy, Maribel Muñoz-Martín, Sonia Martinez, Sagrario Ortega, Susana Prieto, Elisabeth Simboeck, Alain Camasses, Camille Stephan-Otto Attolini, Agustin F. Fernandez, Marta I. Sierra, Mario F. Fraga, Joaquin Pastor, Daniel Fisher, Nuria Montserrat, Pierre Savatier, Javier Muñoz, Magdalena Zernicka-Goetz & Manuel Serrano.
Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases
Nature Cell Biology (2020) DOI: 10.1038/s41556-020-0573-1

Thank you!

We would like to thank all those who contributed to our achievements in 2020.
Our hope is to bring biomedical advances to society.
Our goal, to improve people’s quality of life.