Pasar al contenido principal

Aprendizaje automático profundo completa la información de bioactividad de un millón de moléculas

Científicas
28 Jun 21

Images

Participantes

Imagen
Visiting Student
Tel.+34 93 40 39689

Contact

Imagen
Communication Officer
Tel.+34 93 40 37255

Una herramienta desarrollada por el laboratorio de Bioinformática Estructural y Biología de Redes del IRB Barcelona predice la actividad biológica de compuestos químicos, una información elemental para valorar su potencial terapéutico.

Los científicos han inferido, mediante unas redes neuronales artificiales, los datos experimentales de un millón de compuestos y han desarrollado un paquete de programas para hacer estimaciones para cualquier tipo de molécula.

El trabajo se ha publicado en la revista Nature Communications.

El laboratorio de Bioinformática Estructural y Biología de Redes, liderado por el Investigador ICREA Dr. Patrick Aloy, ha completado la información de bioactividad de un millón de moléculas mediante el uso de  modelos computacionales de aprendizaje automático profundo (deep machine learning). Además, ha hecho pública una herramienta para predecir la actividad biológica de cualquier molécula, incluso cuando no existen datos experimentales disponibles.

Esta nueva metodología se basa en el Chemical Checker, la mayor base de datos de perfiles de bioactividad para pseudofármacos hasta la fecha, desarrollada por el mismo laboratorio y publicada en 2020. El Chemical Checker recoge información de 25 espacios de bioactividad para cada molécula, que tienen que ver con su estructura química, las dianas con las que interacciona o los cambios que induce a nivel clínico o celular. Sin embargo, esta información tan detallada sobre el mecanismo de acción es incompleta para la mayoría de moléculas. Es decir, para una de ellas puede haber información de uno o dos espacios de bioactividad, pero no de los 25 posibles.

Con este nuevo desarrollo, los investigadores integran toda la información experimental disponible con métodos de aprendizaje automático profundo, de manera que se pueden completar todos los perfiles de actividad, desde la química hasta la clínica, para todas las moléculas.

“La nueva herramienta también nos permite pronosticar los espacios de bioactividad de cualquier molécula nueva, y eso es crucial en el proceso de descubrimiento de fármacos, ya que podemos hacer una selección de los candidatos más adecuados y descartar aquellos que, por una u otra razón, no funcionarían” explica el Dr. Aloy.

La biblioteca de software es de libre acceso, está disponible para la comunidad científica en bioactivitysignatures.org, y será actualizada periódicamente por los investigadores, a medida que se disponga de más datos de actividad biológica. Con cada actualización de datos experimentales en el Chemical Checker, las redes neurales artificiales se actualizarán también para ir perfeccionando las estimaciones.

 

Predicciones y fiabilidad

Los datos de bioactividad que predice el modelo presentan un mayor o menor grado de fiabilidad en función de distintos factores, como por ejemplo el volumen de datos experimentales disponibles o las características de la molécula.

El sistema que ha desarrollado el equipo liderado por el Dr. Aloy, además de pronosticar aspectos de la actividad a nivel biológico, proporciona el grado de fiabilidad de la predicción por cada molécula. “¡Todos los modelos son erróneos, pero algunos son útiles! Una medida de confianza nos permite interpretar mejor los resultados y poner de relieve qué espacios de bioactividad de una molécula son certeros, y en cuáles cabe contemplar un porcentaje de error”, explica el Dr. Martino Bertoni, primer autor del trabajo.

 

Poner a prueba el sistema con la librería de compuestos del IRB Barcelona

Para validar la herramienta, los investigadores han buscado, entre la librería de compuestos del IRB Barcelona, aquellos que podrían ser buenos candidatos a fármaco para modular la actividad de un factor de transcripción relacionado con el cáncer (SNAIL1), cuya actividad es casi imposible modular por la unión directa de fármacos (‘undruggable’). De un primer conjunto de 17.000, utilizando los modelos de deep machine learning, hubo 131 compuestos de los cuales el sistema pronosticó unas características (en sus dinámicas, interacción con células y proteínas diana, etc.) que encajaban con el objetivo.

Se ha confirmado experimentalmente la capacidad de estos compuestos para degradar SNAIL1 y se ha observado que, efectivamente, en un porcentaje elevado, concuerda con la que los modelos habían pronosticado, validando así el sistema.


Este trabajo ha sido posible gracias a la financiación recibida por la Generalitat de Catalunya, el Ministerio español de Ciencia e Innovación, el European Research Council, la Comisión Europea, la Agencia Estatal de Investigación y los Fondos FEDER.

 

 

Artículo relacionado:
Bioactivity descriptors for uncharacterized chemical compounds
Martino Bertoni, Miquel Duran-Frigola, Pau Badia-i-Mompel, Eduardo Pauls, Modesto Orozco-Ruiz, Oriol Guitart-Pla, Víctor Alcalde, Víctor M. Diaz, Antoni Berenguer-Llergo, Isabelle Brun-Heath, Núria Villegas, Antonio García de Herreros & Patrick Aloy
Nature Communications (2021) DOI: 10.1038/s41467-021-24150-4

 

Sobre el IRB Barcelona

Creado en 2005 por la Generalitat de Catalunya y la Universidad de Barcelona, el IRB Barcelona es Centro de Excelencia Severo Ochoa desde 2011. El objetivo del IRB Barcelona es hacer investigación de excelencia en biomedicina y mejorar la calidad de vida de las personas y, en paralelo, potenciar la formación de talento, la transferencia tecnológica y la comunicación social de la ciencia. Los 27 laboratorios y ocho plataformas tecnológicas trabajan para responder a preguntas básicas en biología y orientadas a enfermedades como el cáncer, la metástasis, el Alzheimer, la diabetes y enfermedades raras. Es un centro internacional que acoge alrededor de 400 trabajadores de más de 30 nacionalidades. Está ubicado en el Parque Científico de Barcelona. El IRB Barcelona es un centro CERCA y es miembro del Barcelona Institute of Science and Technology (BIST).