Pasar al contenido principal
Cáncer
Genome Data Science
Imagen
Group Leader
Telephone:
+34 93 40 39942

ICREA Research Professor, ERC Starting Grant

Imagen
Imagen
ICREA

Research information

Background

cloud

A deluge of genomic, transcriptomic and phenomic data presents opportunities to learn about the properties of living systems, but it also presents challenges. In order to address outstanding questions in biology and medicine, researchers need to discover meaningful and robust patterns from data.

In the aGENDAS -- a GENome Data Science -- group, we will strive to elucidate the links between mutational processes, natural selection, gene function and phenotype by means of statistical genome analyses. In particular, we use cutting-edge computational techniques and machine learning methodologies for exploring massive genomic data sets.

We aim to answer important biological questions by insightful analysis of data originating from human cancers (somatic mutations, chromosomal alterations, transcriptomes), human populations (germline variants), metagenomics (including human microbiomes) and also fully sequenced microbial genomes.

 

Research lines

Research interests of the aGENDAS group are organized into four themes:

[1] MUTATION

Unraveling mutational processes. Cancer is a disease of the genome. Therefore, mutations are the fuel of carcinogenesis and it is imperative to learn what causes them and how they drive evolution in general, and cancer evolution in particular. Our past work has discovered that mutations are unevenly distributed across the human genome due to differential activity of DNA mismatch repair, which preferentially protects early replicating, gene-rich regions (Supek and Lehner 2015 Nature). Moreover, motivated by recent discoveries of APOBEC3 mutagenesis in tumors, we found another prevalent process that creates clustered mutations in many cancer types -- error-prone mismatch repair (MMR), which employs the low-fidelity DNA polymerase eta (POLH). The histone mark H3K36me3 is an important genomic determinant of MMR activity, recruiting both the standard, error-free MMR and the non-canonical, error-prone MMR (Supek & Lehner 2017 Cell).

[2] SELECTION

Genomic signatures of natural selection. Most somatic mutations found in cancer cells are ‘passenger’ mutations, with little phenotypic consequence. Detecting the few mutations among those which are ‘drivers’ is challenging, yet crucial to understand carcinogenic transformation. We have previously discovered that synonymous mutations ie. those that occur in gene coding regions but do not change the amino acid sequence, commonly drive cancer by affecting splicing patterns of oncogenes (Supek et al. 2014 Cell). Moreover, we have learnt how the quality control pathway of nonsense-mediated mRNA decay (NMD) decides which mRNAs to degrade (Lindeboom et al. 2016 Nat Genet), and used these rules of NMD to reveal patterns of positive and negative selection on tumor suppressors.

[3] FUNCTION

Automated inference of gene function. Genome sequencing technologies are rapidly advancing, providing an abundance of genomes of prokaryotic and eukaryotic species, and also of populations thereof. This presents an opportunity to learn about the function of the ~1/3 of the genes for which, remarkably, a biological role is still not known. We have devised a methodology to infer gene function from evolution of codon biases, and experimentally validated tens of predictions in E. coli (Krisko et al. 2014 Genome Biol). We have also investigated how best to combine heterogeneous genomic predictors, finding that it often pays off to simply trust a single most confident call, even if not supported in multiple methods (Vidulin et al. 2016 Bioinformatics).

[4] PHENOTYPE

Genetic basis of phenotypes. Various kinds of -omics data accumulate rapidly and are increasingly organized into tidy, structured repositories. In contrast, phenomics data, while very valuable, are less often collected in a systematic manner and encoded in computable formats. This hampers the discovery of genes that underlie various phenotypes. We have used machine learning to text-mine the scientific literature and annotate microbias species with >400 phenotypic traits (Brbic et al. 2016. Nucl Acids Res) and suggest their genetic basis (including prevalent epistasis in gene repertoires). One example are genomes of pathogenic bacteria, which tend to encode proteomes resistant to unfolding, thereby protecting the microbes from the oxidative stress (Vidović et al. 2014 Cell Rep).

Selected publications

Biayna J; Garcia-Cao I; Álvarez MM; Salvadores M; Espinosa-Carrasco J; McCullough M; Supek F; Stracker TH
Plos Biology
19
(3 )
e3001176 -
(2021)
Salvadores, Marina; Fuster-Tormo, Francisco; Supek, Fran
Science Advances
6
(27 )
-
(2020)
Lindeboom RGH; Vermeulen M; Lehner B; Supek F
Nature Genetics
51
(11 )
1645 -
1651
(2019)
Vidulin V; Šmuc T; Džeroski S; Supek F
Microbiome
6
(1 )
129 -
(2018)
Brbi? M; Piškorec M; Vidulin V; Kriško A; Šmuc T; Supek F
Nucleic Acids Research
44
(21 )
10074 -
10090
(2016)
Lindeboom R; Supek F; Lehner B
Nature Genetics
48
(10 )
1112 -
1118
(2016)
Krisko A; Copic T; Gabaldón T; Lehner B; Supek F
Genome Biology
15
(3 )
R44 -
(2014)

Projects

"Mutabilidad regional del genoma en células somáticas humanas" (RegioMut), cofinanciado por el Ministerio de Ciencia, Innovación y Universidades- Agencia Estatal de Investigacióny por el Fondo Europeo de Desarrollo Regional (FEDER) de la Unión Europea. Referencia: BFU2017-89833-P.

Ministerio de ciencia, innovación y universidades
Agencia estatal de investigación
European union

"Hypermutated tumors: insight into genome maintenance and cancer vulnerabilities provided by an extreme burden of somatic mutations" (HYPER-INSIGH), financiado por el European Research Council (ERC) mediante el Programa de Investigación e Innovación de la Unión Europea Horizonte 2020. Referencia: 757700.

ERC

Grup de Recerca consolidat (SGR 2017-2019) de la Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya. Agencia de Gestió d'Ajuts Universitaris i de Recerca (AGAUR). Referencia: 2017 SGR 1322.

AGAUR
Secretaria d'Universitas i Recerca

"Improved clinical decisions via integrating multiple data levels to overcome chemotherapy resistance in high-grade serous ovarian cancer" (DECIDER), financiado por la Comisión Europea mediante el Programa de Investigación e Innovación de la Unión Europea Horizonte 2020. Referencia: 965193.

Horizon 2020

EMBO Young Investigator Programme Award, 2020.

embo

Suport obtingut de l’FSE a través de les Ajuts per a la contractació de personal investigador novell (FI). El Fons Social Europeu dona suport a la creació d’ocupació, ajuda a las persones a aconseguir millors llocs de treball i garanteix oportunitats laborals més justes per a la ciutadania de la Unió Europea.

FEDER

Group members

Group Leader
Lab Manager
Postdoctoral Fellow
Postdoctoral Fellow
Postdoctoral Fellow
Postdoctoral Fellow
PhD Student
PhD Student
PhD Student
Lab Technician
Visiting Scientist
Visiting Scientist

Group News

IRB Barcelona en los medios
28 Dic 2018