Skip to main content

Key player in cell metabolism identified

Innovation
16 Jan 18

Images

Participants

Image
Stracker
Group Leader
Tel.+34 93 40 31183
Image
Postdoctoral Fellow
Tel.+34 93 40 31197
Image
García
Postdoctoral Fellow
Tel.+34 93 40 31197

Contact

Image
Communication Officer
Tel.+34 93 40 37255

Published in Nature Cell Biology (NCB), the study shows that the EXD2 protein is critical for the mitochondria, the cell’s powerhouses, to produce energy.

This protein was previously thought to be located in the cell nucleus and to be involved in DNA repair.

The results contribute to our basic understanding of mitochondria and suggest that EXD2 could be important for fertility and represent a potential target for cancer therapy.

Researchers from the Genomic Instability and Cancer Laboratory at Institute for Research in Biomedicine (IRB Barcelona) have identified a key role for EXD2 in protein production in the mitochondria, the cellular organelles responsible for the majority of energy generation.

 “We have provided extensive evidence that EXD2 is a mitochondrial protein and that its main function is to facilitate the production of proteins in the mitochondria,” explains Travis H. Stracker, head of the laboratory.

This work challenges the interpretation of previous studies that suggested that EXD2 performs a DNA repair function in the nucleus. “However, at this point we can’t rule out other possible functions”, declares Stracker.

Published in Nature Cell Biology, the study presents the results from a collaborative multidisciplinary approach, using state of the art proteomics, metabolomics, biochemistry, cell biology and the development of the fruit fly, Drosophila melanogaster, to pinpoint the function of EXD2.

Cleaning up the energy production process

Scientists identified the mitochondrial ribosome (or mitoribosome), the cellular machine required for protein production in the mitochondria, as a major interactor of EXD2. “EXD2 targets messenger RNA to keep the mitoribosome “clean” until it is mature and ready to generate proteins. In the absence of EXD2, cells are severely defective for mitochondrial protein production,” explains Joana Silva, first author of the study and former PhD student of the Genomic Instability and Cancer Laboratory.

EXD2’s role in the mitoribosome is critical for suppressing the generation of Reactive Oxygen Species (ROS), that can arise due to mitochondrial defects, and facilitating normal development in Drosophila. Flies lacking EXD2 showed increased ROS levels, delayed development and reduced fertility.

“The results highlight the complexity of mitochondrial protein production and demonstrate that many levels of regulation remain to be elucidated”, says Stracker.

Potential target for metabolic disorders and cancer therapy

These studies may have implications for the understanding and treatment of metabolic disorders, such as diabetes, and cancer. In relation to the latter, in recent years, the importance of mitochondrial energy generation in tumors has been revisited and the inhibition of protein production has been proposed to be a therapeutic target by many groups.

As EXD2 is an enzyme and required for mitochondrial translation, it is possible that targeting it could have antitumoral effects, something that will be tested in future experiments.

This study was supported by the Ministry of Economy, Industry and Competiveness (MINECO), as well as the Finnish Cultural Society and the Fundação para a Ciência e a Tecnologia that funded the theses of the first two authors.

The work was performed in collaboration with several other labs that made important contributions, including Aidan Doherty in the University of Sussex, Brian Raught in the University of Toronto, Oscar Yanes in the Universitat Rovira i Virgili and Andreu Casali and Lluís Ribas de Pouplana in the IRB Barcelona.

 

Reference article:

Joana Silva, Suvi Aivio, Philip A. Knobel, Laura J. Bailey, Andreu Casali, Maria Vinaixa, Isabel Garcia-Cao, Étienne Coyaud, Alexis A. Jourdain, Pablo Perez-Ferreros, Ana M. Rojas, Albert Antolin-Fontes, Sara Samino-Gené, Brian Raught, Acaimo González-Reyes, Lluis Ribas de Pouplana, Aidan J. Doherty, Oscar Yanes and Travis H. Stracker

EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation

Nature Cell Biology (2018) https://dx.doi.org/10.1038/s41556-017-0016-9

 

About IRB Barcelona

Created in 2005 by the Generalitat de Catalunya (Government of Catalonia) and University of Barcelona, IRB Barcelona is a Severo Ochoa Centre of Excellence, a seal that was awarded in 2011. The institute is devoted to conducting research of excellence in biomedicine and to transferring results to clinical practice, thus improving people’s quality of life, while simultaneously promoting the training of outstanding researchers, technology transfer, and public communication of science. Its 27 laboratories and eight core facilities address basic questions in biology and are orientated to diseases such as cancer, metastasis, Alzheimer’s, diabetes, and rare conditions. IRB Barcelona is an international centre that hosts 400 employees and more than 30 nationalities. It is located in the Barcelona Science Park. IRB Barcelona is a CERCA center, and a member of the Barcelona Institute of Science and Technology (BIST).