Skip to main content

Scorpion venom to shuttle drugs into the brain

Scientific
14 Nov 18

Images

Participants

Image
Research Associate
Tel.+34 93 40 34805
Image
Emeritus Professor
Tel.+34 93 40 37125
Image
Postdoctoral Fellow
Tel.+34 93 40 37127
Image
Monica Varese
Postdoctoral Fellow
Tel.+34 93 40 37127
Image
Postdoctoral Fellow
Tel.+34 93 40 37127
Image
Research Associate
Tel.+34 93 40 37127

Contact

Image
Communication Officer
Tel.+34 93 40 37255

Researchers at IRB Barcelona modify chlorotoxin—a small protein present in scorpion venom with blood-brain barrier permeability—to transport drugs into the brain. 

The barrier, which protects the brain, prevents drugs used for the treatment of neurological diseases and brain tumours from entering the organ.

The Peptides and Proteins lab at the Institute for Research in Biomedicine (IRB Barcelona) has published a paper in Chemical Communications describing the capacity of a small protein (a peptide)  derived from chlorotoxin, found in scorpion venom (Giant Yellow Israeli scorpion), to carry drugs across the blood-brain barrier (BBB).

The barrier serves to protect the brain from toxic substances, but it also prevents many potential drugs for the treatment of neurological diseases and tumours from entering this organ. “About 98% of drugs that could have therapeutic applications cannot be used because they cannot cross this barrier,” explains the head of the lab, Ernest Giralt.

The researchers have chemically synthesised chlorotoxin and a series of analogues that retain some of the properties ofas the parent peptide. They have studied the efficiency of these compounds in cell models of the BBB and have demonstrated that the peptide called MiniCTX3 has the capacity to transport compounds of different nature across the BBB “with great efficiency”.

Animal venoms for the brain

In the same way that traditional medicine uses natural products such as plants and flowers to treat a range of diseases, the IRB Barcelona lab has sought inspiration from venoms with the objective of identifying peptide shuttles. “Our goal is to enable drugs to enter the brain and to do this we bind them to peptides specifically designed to cross the BBB. The conjugation of these drugs to the shuttles would improve their efficacy,” says Meritxell Teixidó, co-leader of the research.  “There are only two or three groups worldwide devoted to shuttle peptides. We are working on a number of strategies and one of them is venoms,” says Giralt.

In previous studies, these scientists inspired in a peptide from bee venom, namely apamin, had made some chemical modifications and obtained a shuttle with BBB permeability.

After these positive results, the lab wanted to address whether venoms could provide a universal source of peptide shuttles. “Thousands of venoms that hold millions of peptides with the shuttle potential have been described. We chose chlorotoxin because it has already been reported that it acts like a toxin in the brain,” explains Teixidó.

This study is another example of ground-breaking research finding inspiration in nature and it has produced another shuttle that can enhance drug transport into the brain.

The research was funded by the Ministry of Science, through ERDFs, and the Catalan Government.

 

Reference article:

Cristina Díaz-Perlas,  Monica Varese,  Salvador Guardiola,  Jesús García,  Macarena Sánchez-Navarro,  Ernest Giralt and  Meritxell Teixidó

From venoms to BBB-shuttles. MiniCTX3: a molecular vector derived from scorpion venom

Chemical Communications (2018) DOI: 10.1039/C8CC06725B

 

About IRB Barcelona

Created in 2005 by the Generalitat de Catalunya (Government of Catalonia) and University of Barcelona, IRB Barcelona is a Severo Ochoa Centre of Excellence, a seal that was awarded in 2011. The institute is devoted to conducting research of excellence in biomedicine and to transferring results to clinical practice, thus improving people’s quality of life, while simultaneously promoting the training of outstanding researchers, technology transfer, and public communication of science. Its 27 laboratories and eight core facilities address basic questions in biology and are orientated to diseases such as cancer, metastasis, Alzheimer’s, diabetes, and rare conditions. IRB Barcelona is an international centre that hosts 400 employees and more than 30 nationalities. It is located in the Barcelona Science Park. IRB Barcelona is a CERCA center, and a member of the Barcelona Institute of Science and Technology (BIST).