Structural and Computational BiologyBiomedical Genomics

Studying tumour genomes

Biomedical Genomics
Group Leader

ICREA Research Professor, UPF Assistant Professor, ERC Consolidator Grant

+34 93 40 39912
Joint appointment: Oncology

Our research is focused on the study of cancer from a genomics perspective. We are particularly interested in the identification of cancer driver mutations, genes and pathways across tumour types and in the study of their potential as therapeutic targets.

1. Understanding mutational processes

Tumour genomes contain thousands of mutations, which can be identified by Next- Generation Sequencing technologies. By studying the observed pattern of these somatic mutations across genomic regions, we are able to explore the basic cell mechanisms that produce them. The interplay between these mechanisms, such as internal and external insults that damage DNA, chromosomal replication, transcription, and DNA repair mechanisms, leads to mutational processes that give rise to heterogeneous patterns of somatic mutations across the genome.

We have detected, for instance interactions between the machineries of transcription regulation and nucleotide excision repair (NER). Specifically, we recently demonstrated that the binding of transcription factors to their binding sites hinder the efficiency of NER, resulting in the generation of a greater number of mutations in the transcription factor binding site than in neighbouring regions (http://www.nature.com/nature/journal/v532/n7598/abs/nature17661.html).

2. Finding the drivers of cancer

Cancer is mainly a genetic disease. It is caused by genomic alterations that confer somatic cells competitive advantages over neighbouring cells in the same tissue. The genes affected by these alterations are commonly referred to as cancer drivers because they drive the abnormal growth of malignant cells. Recently, important international initiatives have sequenced the exomes and genomes of thousands of tumours belonging to different types of cancer. One of the main goals of the colossal effort channelled into this endeavour is the identification of cancer driver genes and, more recently, also potential driver non-coding genomic elements, such as promoters, enhancers, and non-coding RNAs.

Given that genomic alterations in driver genomic elements are positively selected in the course of tumorigenesis, an effective approach to detect these elements is to find signals of positive selection in their mutational patterns. In recent years, as part of the aforementioned initiatives, we have built bioinformatics tools to identify genomic elements that bear signals of positive selection in their mutational patterns across cohorts of tumours. We call this suite of methods Oncodrives. Using a combination of some of these methods, and others on large pan-cancer cohorts of tumours, we produce comprehensive and reliable catalogues of cancer driver genes. This information is available online at intogen.org

3. Contributing to precision medicine

Precision medicine—understood as the ability to prescribe anti-cancer drugs that specifically target driver alterations in a given tumour—as opposed to traditional chemotherapeutic approaches is an emerging paradigm in clinical and translational research in oncology. The possibility to associate the alterations observed in a patient’s tumour with suitable anti-cancer therapies relies heavily on our ability to accurately identify the alterations that drive the malignancy, as well as those that predict its sensitivity or resistance to drugs.

Our lab seeks to contribute to the advancement of precision medicine, in particular the interpretation of the genomic variants of tumours, thus facilitating the identification of therapeutic options for cancer patients. With this aim, we have developed an approach and several bioinformatics resources to accurately interpret alterations in human tumours. This approach is available at CancerGenomeInterpreter.org.

Frigola J, Sabarinathan R, Mularoni L, Muiños F, Gonzalez-Perez A and López-Bigas N.
Nat Genet, (2017)
Radhakrishnan Sabarinathan, Loris Mularoni, Jordi Deu-Pons, Abel Gonzalez-Perez, Nuria Lopez-Bigas
Nature, (2016)
Carlota Rubio-Perez#, David Tamborero#, Michael P. Schroeder, Albert A. Antolin, Jordi Deu-Pons, Christian Perez-Llamas, Jordi Mestres, Abel Gonzalez-Perez#, Nuria Lopez-Bigas#
Cancer Cell, (2015)
Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP, Jene-Sanz A, Santos A & Lopez-Bigas N
Nature Methods , (2013)

This group receives financial support from the following sources:

            

People

Group news & mentions

<p>Núria López-Bigas, group leader of the Biomedical Genomics Lab</p>
13 Feb 2018

Betevé Notícies interviewed Núria López-Bigas, group leader of the Biomedical Genomics Lab, about the role of women in science.

<p>In the picture, Núria López-Bigas and the team that published the study in Nature Genetics</p>
29 Nov 2017

The scientific journal Nature Genetics has dedicated a "News and Views" article to the latest study by the ICREA researcher Núria López-Bigas, published in November.

12 Nov 2017

La Vanguardia, Europa Press and Biotech-Spain, as well as El Mundo's Innovadores supplement, have dedicated some lines to the ENABLE symposium.

<p>Núria López-Bigas</p>
7 Nov 2017

Various media, including Diario Médico and Madri+d, have echoed the study led by the ICREA researcher Núria López-Bigas, which shows that the mechanism of DNA repair is more efficient in the region

Upcoming events

28 Feb
Room1 Tower D, Parc Científic de Barcelona
Speaker:
Guzmán Sánchez and Estela Cepeda
07 Mar
Sala Dolors Aleu, Parc Científic de Barcelona
08 Mar
Aula Fèlix Serratosa, Parc Científic de Barcelona
Speaker:
Dr. Andrew Koff, Member, Sloan-Kettering Institute Head, Laboratory of Cell Cycle Regulation Professor, Gerstner School of Biomedical Science Chair, Allied Programs in Biochemistry and Molecular and Cell Biology. Weill College of Medicine, Cornell Univers